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We consider the random Gibbs field formalism for the ferromagnetic ID 
dichotomous random-field Ising model as the simplest example of a quenched 
disordered system. We prove that for nonzero temperatures the Gibbs state is 
unique for any realization of the external field. Then we prove that as T-* 0, the 
Gibbs state converges to a limit, a ground state, for almost all realizations of the 
external field. The ground state turns out to be a probability measure concen- 
trated on an infinite set of configurations, and we give a constructive description 
of this measure. 

KEY WORDS: Gibbs states; ground states; residual entropy; random field; 
Ising model. 

1. I N T R O D U C T I O N  

The random-field Ising model  ( R F I M )  is a challenging example of a dis- 
ordered system demons t ra t ing  a nontr iv ia l  effect of randomness  on the 
thermodynamic  properties and the structure of g round  states (see, e.g., 
refs. 1-3). Besides its physical mot iva t ion  as a model  of certain classes of 
r andom diluted magnets  ~4) or of phase separat ion in some porous  media, ~5) 
it has aroused serious theoretical interest as a model  for fundamenta l  con- 
cepts of quenched r a n d o m  systems/6~ 

The fundamenta l  p roblem of existence of magnet iza t ion  in R F I M  (for 
low temperatures  and "small" r a n d o m  field) was solved in ref. 7 for d>~ dr, 
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where the lower critical dimension d / = 3. Simultaneously this problem was 
considered for the mean-field RFIM. ~8~ In the latter case one can go further 
into the problem of the order parameter  and describe explicitly the struc- 
ture of Gibbs statesJ 9~ On the other hand, for the RFIM on a Bethe lattice 
only the ground state is found ~m~ and the T:/:0 critical behavior is argued 
to be mean-field like. 

The one-dimensional RFIM for a dichotomous random field is of 
particular interest because it can be solved at T = 0  ~ (and partially 
for T~O ~2~) and because it gives interesting effects (e.g., the residual 
entropy has an infinite number of spikes in addition to discontinuities as a 
function of the field amplitude) related to the physics of frustration. It was 
shown in ref. 13 that the one-dimensional RFIM is closely related to a 
stochastic mapping. Then the analysis of this model coincides with a 
standard Markov chain study of the stochastic mapping and the properties 
of its invariant measure. ~4-~6~ The fractal nature of the support  of the 
invariant measure as well as the complicated structure of the ground 
state ~v~ give a new insight into the frustration in this model, although a 
rigorous study of Gibbs states and their limits for T ~  0 is (to our knowl- 
edge) lacking. The aim of the present paper  is to fill this gap in the study 
of the one-dimensional RFIM for an independent dichotomous random 
field. 

In the next section we present the main definitions, recall the Markov 
chain approach, and prove uniqueness of Gibbs states when T >  0 for any 
fixed configuration of the external field. In Section 3 we give an explicit 
algorithm for the construction of the whole set of ground states for ahnost 
all realizations of the external field. We indicate a relation between the 
structure of ground states and the behavior of residual entropyJ ~HT~ 
Proofs for the results of Section 3 are given in Section 4, and concluding 
remarks are given in Section 5. 

2. DEFINITIONS AND UNIQUENESS OF GIBBS STATES 

In this paper we consider the ferromagnetic one-dimensional RFIM 
(with nearest neighbor interaction) in a quenched dichotomous stochastic 
field. 

Let 7/be a one-dimensional lattice, X- -  { - 1, 1 } be the individual spin 
space, and ~2 = X ~ = { a = { ai}i~ ~: ai ~ X} be the configuration space of the 
Ising model on Z. For a subset A c 7/, we use n A : s ~ OA = XA to denote 
the projection onto the coordinates in A: nA a = a A = {a~} i~ A. If  the subset 
A is finite and B~, ~ 2  A, then C(BA)= n~71(B,) is a cylindrical set with the 
base B A. We let Z and X~f be the a-algebra generated by cylindrical sets 
in s and $2,, l . 
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We also introduce a sequence h = {h/}j~z of real-valued independent 
identically distributed random variables (i.i.d.r.v.) according to the probabil- 
ity measure dv. The probability space of h is (R Z, ,~, 2), with the a-algebra 
,~, generated by the cylindrical sets C(Rz), and with infinite product 
measure d2 = ]-I j~ dv(hfl. We shall consider a dichotomous field taking the 
values ~ and -c~ with probability 1/2: dv(h~) = [ �89 + 16(hi-F 0c)] dh~. 

The Hamiltonian in the subset A = [m, n] is given by 

n z - -  1 ~, 
HA.h(a A I ~'~')= - Y', a , ~ + , -  h ~ a , - ( a , , , ~  .... , +a, ,~ , ,+ l )  (2.1) 

where A"= Z\A.  The finite-volume Gibbs measure (state) on s A at inverse 
temperature fl-- T-J and boundary condition # "~', which specifies the spin 
configuration outside of A, is defined by 

PA./~./,(a.~l I oA")= --1 6,,,) Z/~.,,(A I e x p [ - f l H , , ( a "  I 6"") ] (2.2) 

where Z/~.h is the partition function 

Z p . h ( A  I ~A' )=  ~ exp[ - - f lHA(aAl#"" ) ]  (2.3) 

We recall that a probability measure It on (s ~') is called a Gibbs state 
corresponding to specifications (2.2) if for all finite A c Z and each A e Z,~, 
one has the Dobrushin-Lanford-Ruelle equation (see, e.g., ref. 18) 

Iz(~t,T'm I Z'l")(a) = P I(A I ~A,a) it-almost sure (a.s.) (2.4) 

or, equivalently, by the property of conditional probability, if 

(~tA/2)(A) = I lt(da) P.j(A I ~t,,,.a) (2.5) 

where (nAlt)(A)=lt(nAIA).  As is well known (see, e.g., ref. 18), the set of 
Gibbs states coincides with the closed convex hull of the set of weak limits 
of finite-volume Gibbs measures (2.2). 

We now turn to the study of these limits for T >  0. We first define a 
Hamiltonian in A = [m, n] with generalized b.c.: 

n-- I ~, 
HA.l,( or'' I a, b)  = - Y ,  a , a , +  ~ - h i a i -  (a,,,a + a,,b) (2.6) 

i = I l l  i = I I I  

and use respectively PA.p.h(aAla, b) and Z/3j,(Aia, b) to denote the 
corresponding state and partition function. Let A = [k, l] c [ m ,  n] be a 
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subset of  A. To  calculate the measure (2.2) of  the cylindrical set C(B~)  
based on the space I2~, we use the identities 

Z 
a i =  +1  

Z 
o i =  +1  

where 

exp{fl[cricri+ 1 + cri(h i + ui) ] } = exp{f l [a ;+ ,  f/~(h, + ui) + ga(h,  + ui)] } 

(2.7) 

exp{ fl[ a i _,  a; + cri(hi + vi)] } = exp{ fl[ a ,_  i f/s(hi + vi) + g/s(hi + vi)] } 

(2.8) 

f p ( x )  = (1/2fl) ln [cosh  f l (x  + 1 )/cosh f l (x  - I )] 
(2.9) 

g/~(x) = (1/2fl) ln [4  cosh f l (x  + 1 ) cosh f l (x  - 1)] 

to sum up over the spins in the set A \ A .  The step-by-step summing up 
from the (m)th spin to the ( k - 1 ) t h  spin [see (2.1) and (2.7)], generates 
the mapping 

u~i"'~=fp(hi_l+uCi"'_~l), i = m + l , m + 2  ..... k (2.10) 

where u,,,l"l - 6 , , _ , .  Notice that -- iu~"'~ depends o n  h i_ 1, h i - 2  ..... h .... 6m-- 1: 

U~"'~=u~iml(hi_l,hi_ 2 ..... h , , , 6 , , _ l ) ,  m +  l <~i<~k 

The same procedure for the spins on [ l +  1, n] [see (2.1) and (2.8)] 
generates the mapping 

.a_,~,,I ~ i = n - l , n - 2  ..... 1 (2.11) v'i ") = f p ( h i + ,  . vi+, , ,  

~,,i depends on h i+ l ,  h i+ ,  .... h , , , # , + l  where vl, "~ - 6,,_ i. Here, v i 

vr  ..... h,,, # , + l ) ,  I < ~ i < ~ n - I  

Applying the mappings (2.10) and (2.11) to the calculation of  the 
part i t ion function (2.3), one gets 

Zp.h(A I 6 , , , - - l , 6 , + l )  

= e x p  g a( hi + u ,,,I) 

v I ) exp  fl g p ( h i + v l  ")) (2.12) 
i = l +  1 
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The same calculations for the numerator of (2.2) give for the measure of 
the cylindrical set C(B,j) the following result: 

Er exp[ - f lHa. , , (a  a I "k"l'm, v~,,I)] 
P ,,.l~.h( C(Ba) ] ~ a') - 

z/,,,,( a I '''''~-k , v,'"~', 

= p~./j.,,(B a ] ,,I-,~ ,,,I "k ,vl  ) (2.13) 

T h e o r e m  2.1. Let h sl~ ~ be a fixed configuration of the external 
random field. Then for any positive temperature T >  0 and any cylindrical 
set C(Bj) ,  the limit of the measure (2.13) exists and is independent of the 
boundary conditions 

lim P,,.p.h(C(Ba) l 6A~) = Pa./j.h(B.j [uk, vl) (2.14) 
A T ? _ 

where 

Uk= lim I,,ml. hk h .... 6 .... ,) U k  I l L k - - I ~  - - 2 ~ ' " ~  

v / = lim v~"(hl+ , ,  h i+2  ..... h.,  ~,,+ 1) 
(2.15) 

depend uniquely on the restriction of the field respectively on the intervals 
( - o z ,  k - l ]  and [ l + 1 ,  +Go). 

Proof. From the representation (2.13) it follows that all that we have 
to prove is (2.157. Let v i = f # ( h i +  , + vi+l) and v~=fll(h~+ , +v'i+,) for i>>.1; 
then 

Iv i -  vll = If/~(h, +, + v~+, ) - fa (h~+,  + v'~+, )l ~< f~(0) I vi+, - v;+, I (2.16) 

because f/~(x) is odd, concave for x/> 0, and satisfies 0 <f}j(x) ~<f~(0) for 
f l< oz. By applying (2.16) recursively we get 

I<-  vll < (f 'p(o))"- '  l v , , -  v;,I (2.17) 

Since f}j<~(O)< 1, it first follows that the sequence {vi(h;+l .... h,,; a)},,>~ 
is a Cauchy s~quence and also that the limit 

lim vi(hi+ i ..... h,; a) = vi(hi+ l ..... h ...... ) 
tl ~ cr~ 

does not depend of the initial condition a, but only on the configuration 
/ { ~j}j=i+,. This proves the second assertion of (2.157. The first one is 

obtained analogously. QED 
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C o r o l l a r y  2.1. For any realization of the random external field 
h ~ R  ~ and any positive temperature T > 0 ,  the 1D ferromagnetic RFIM 
with nearest neighbor interaction has a unique limiting Gibbs state Pp.h(" ) 
which is a weak limit of specifications {P,~,p,h('[ #'~')}A for arbitrary 
boundary conditions, 

Remark 2.1. From (2.1) we get for two different boundary condi- 
tions that 

[H. , .h(a" l -A' A -At, ,  ~,  ) - -HA.h (  ~r I a ,  _ JI <<.4 

Then by the general theorem proved in ref. 19 it follows that all Gibbs 
states coincide. 

The proof of the uniqueness theorem for Gibbs states is mainly based 
on the inequality f)/(0) < 1. But for f l ~  ov one gets f 'p (x)  ~ 1 uniformly for 
x ~ ( -  1, 1 ). Therefore, the transition to T =  0 needs a special investigation 
which is the subject of the next section. 

3. GROUND STATES AND RESIDUAL ENTROPY 

Our aim is to prove the existence of the limit P~.,h = lim,~_ ~ fllLh for 
ahnost  all h = { h ; =  +~t, i~7/} and to describe P~..h. In this section we 
formulate our main results. Their proofs are given in the next section. 

Theorem 3.1. The limit 

p , ~ , h =  lim P/J,h (3.1) 
,(] ~ ,zC 

exists for almost all h. 

To describe P.~..h. consider sequences u = {u,, i t  7?} and v = {v,, i t  Z} 
satisfying 

u i = f ~ ( h i - 1  + ui-1) 

v i = f z ( h i +  i + Vi+l), 
(3.2) 

where ./'~. = lim/j . . . .  fp [see (2.9)] is the piecewise linear function 

i l  if x ~ < - I  
f , ~ ( x ) =  if - 1  ~<x~<l 

if x~>l 

(3.3) 
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By L e m m a  4.1 (see below), the sequences u and v exist for almost  all h and 
they are unique. In addition, u i and vi take values only in the set 
F = F + w F  where 

F+  = { 1, 1 - ~, 1 - 2~ ..... 1 - ncc }, n = [ 2/cc ] 

F _  = { - 1 ,  - 1  + ~ ,  - 1  + 2 ~  ..... - 1  +n~}  

Observe that  luil, Iv , l< l .  Let us part i t ion ~ into three subsets, 
Y_=A+ w A _ w A ,  with 

A+ = {ie7/ ;  "[-(hi'q-tli'-}-l)i)>O } (3.4) 

A = { ie  71: hi+u,+vi=O} (3.5) 

If ~ > 2, then the set A is empty and ai = sign hi, so that the ground-sta te  
configuration follows the field [see statement (a) of  Theorem 3.2]. So we 
will assume ~ ~< 2. In this case by Lemma 4.2 below, the sets A_+, A are 
infinite and A consists of  a sequence of  finite intervals Ak = [ik, Jk], k �9 Z, 
i~.>~jk-1+2. In addition, by L e m m a  4.3 below, for i � 9  one has 

lu,,.I = Ivj,.I = 1 ( 3 . 6 )  

and on Ak (3.2) reduces to the r a n d o m  walk, 

lg i=hi_l - t -Hi_  I , ik <i<~jk  
(3.7) 

v i = h i + l  + Vi+l, ik ~ i < j k  

For the complete description of~t~_j, on Ak we need to distinguish the sites 
i, ik < i <~Jk, such that lu i l=  1, which we call switches. Consider the set M k  
of all configurat ions a =  {ai, i e A k }  in Ak such that: 

(i) If  i is a switch, then either cr~ = a i_  i or ai = - a i _  1 = - u .  

(ii)  If  i >1 ik + 1 is not  a switch, then a ; =  a i _  i. 

In other  words,  for a �9 M k ,  cri can change its value, when i runs from 
i k to Jk, only at switches i �9 Sk and only if a i = - ui at a switch. Note  that  
there is no restriction on the value of  a;  k. 

Theorem 3.2. (a)  P~,s, is concentrated on configurations with 
a; = + 1 for i �9 A + and a,. = - 1 for i �9 A _.  

(b) nAl l~ j ,=I - I k~Zn~ jk#~ ,h .  

(C) n.~kll~,h is concentrated on M k ,  and it is a uniform measure 
on M k. 
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Let us make some comments. Assume first that 2/e ~ Z. Then the 
sequences F+ and F _  do not intersect and Eqs. (3.6) and (3.7) imply that 
on each Ak, u~ takes values only in one of these sequences. Assume for the 
sake of definiteness that on a given Ak, ui takes values from F+ .  Then at 
all switches i e Sk, ug= I. This implies that Mk consists of the configura- 
tions ag -- + 1, ai = - 1, and all configurations such that aj = + 1 for j < i 
and % =  - 1  for j>~i where i is a switch. Hence Mk consists of 2 + n k  
configurations, where nk is the number of switches. 

If 2/e is integer, then the sequences F+ and F _  coincide and at 
switches, u~ can take both values + 1 and - 1 .  This increases the number 
of configurations in Mk and gives rise to a spike of residual entropy. 
Between any two neighboring spikes, when 2/(m + I ) <  ct < 2/m, the struc- 
ture of the ground state is preserved and the residual entropy is constant. 
This explains the behavior of the residual entropy obtained in ref. 11. 

Theorems 3.1-3.2 are proved in the next section. 

4. PROOF OF THEOREMS 

Before proving Theorems 3.1-3.2 we make some observations. The 
finite-dimensional distribution of a chain of spins a ~ = ak ..... a~ with respect 
to Pp.h is [see (2.5), (2.13)] 

pp.h(a ~J) = Z - l  exp[ - - f lH a(a ~J [ uk, u/)] 

= Z  -I  exp ~Ti~i+ I "~-fl ~ hiffi-~-flblkak-~-flVlal 
i=k 

(4.1) 

where hereafter we use the short-hand notation pp.h(A) instead of 
pp, h(rrslA) with A = [k, l], and the numbers u ;=  ui(fl), vj= vi(fl), i~ 7/, are 
defined with the help of the recurrent equations 

ui = fp(hi_ l + ui_ i) 

v~= fp(hi+ l + v~+ 1) 
(4.2) 

As proven in Theorem 2.1, when fl is finite, due to the contractive property 
of the map t--*fp(t), these equations have for all h a unique solution which 
does not depend on initial conditions. The following lemma assserts that 
when fl = co, this is true for almost all h, i.e., 2-a.s. 

k e m m a  4.1. For almost all h the recursive equations (3.2) have 
unique solutions u and v. 

Proof. Let us prove the existence of a unique solution u for the first 
equation in (3.2). To this end let us consider a solution utN~= {Ul -NI} of 
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(3.2) on {i~> - N }  with an arbitrary initial value u(_-if ) =7,  lTI ~< 1, and let 
us prove that for almost all h, as N ~ ~ ,  u (N) approaches a limit u. Indeed, 
lbr a given h consider the set B(h) o f j ~ 7 /  such that 

h j = h j _  1 . . . . .  h j  . . . .  1--~. (4,3) 

where n =  [2/~]. Then (3.2) implies that if j~B(h) and j > - N + n +  1, 
then ,j" ( - m  -- 1, since 

Hence 

j . . . .  ~ + ( n + l ) ~ > ~ - - l +  +1  0c>~l (4.4) 

lim uJ-N)= 1, Vj~B(h) (4.5) 
N ~  

If i>j, where jeB(h), then by (3.2), 

lim u~-N~=f~_~(hi_~+fo~(hi_2+...f~(hj+l)...))eF (4.6) 
N ~ c~ 

For almost all h the set B(h) is unbounded in the sense that VM > 0, 

B(h)n{j<~ -M} v~(3, B(h)n{j>~M} 4:(,0 (4.7) 

Indeed, if we partition 7/ into blocks A k = { (n + 2)k <~ j < (n + 2)(k + 1 )}, 
then for a given L >  0 the probability that the event {hj=o~, Vj~Ak} does 
not hold for all k ~< - L  is equal to 

I-I ( 1 - 2  . . . .  2 ) = 0  (4.8) 
k ~  - - L  

This proves the existence of a unique solution u for almost all h. Similarly 
we prove the existence of a unique solution v for almost all h. QED 

I . e m m a  4.2. If a ~< 2, then for almost all h, the sets A• and A are 
unbounded in the sense that for A = A•  A and VM > 0, 

An{ j<~-M}  4=(3, An{j>>.U} ~,~3 (4.9) 

C o r o l l a r y  4.1. The set A consists of an infinite sequence of finite 
intervals Ak = [ik, Jk], k ~ 7Y, ik >~Jk- 1 + 2 .  

Proof of l_emma 4.2. For a given h consider the set B(h) of j~7 /  
such that (4.3) holds. Then uj= 1 (see the proof  of Lemma 4.1), so 

hj+uj+uj=o~+l+uy~o~>O, VjeB(h) (4.10) 

822/84/5-6-14 
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Thus B(h)cA  +, and hence by (4.7) the set A+ is unbounded for almost 
all h. Similarly we prove that A_ is unbounded. It remains to prove that 
A is unbounded. For a given h consider the set C(h) of jeT/  such that 

h i _  l . . .  h j  _ n _ l = cX, h j  = - o~ 
(4.11) 

h i + 2  . . . . .  

Then by (3.2), uj= 1 and vj+~ = - 1 ,  so that vj= - 1  + g  and 

h j + u j + v j = - ~ + l + ( - l + ~ ) = O ,  VjEC(h) (4.12) 

Hence C(h)=A. Since the probability that C(h) is unbounded is equal to 
1, the set A is unbounded with probability 1 as well. QED 

The following lemma implies (3.6) and (3.7). 

k e m m a  4.3. The sequences {ui} and {vi} satisfy luik-, +/l,-~_,1 > 1 
and [vj~.+, +hh+ l l  > 1, while for ieAk one has lui+hil <<, 1, Ivg+hi[ ~ 1. 

Proof. Observe the following: if u; + vi + hi = 0 and 

U i + l  = u i + h i  

/)i = / . ) i  + l + h i + l  

(4.13) 

then u~+~+ vi+~+ h,.+~ = 0. This means that i cannot be the right endpoint 
of Ak. Therefore, at i=jk at least one of the equations (4.13) is violated. 
As it follows from the recurrent equation (3.2), the only way to violate the 
first equation in (4.13) is to have 

[uA = 1, ulhi>O 

But then [ u i + h i [  > 1 and u i ' + v i - k h i = O  , which is impossible. So we con- 
clude that at i=jk the second equation in (4.13) is violated, which is 
possible only when 

[vjkl = 1, UJk+lhjk+l>O 

Hence 

Ivj,+l-4-h:,.+ll > l 

and one proves analogously lu ;k_ ,+h ; ,_~ l> l .  To prove the other 
inequalities assume the contrary, i.e., that [vi + hA > 1 for some iEA, .  But 
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then the equality u,.+ v~ + hg= 0 is impossible, so i cannot belong to A k. 
This contradiction proves [v~+h~[ ~ 1. The inequality lug+h;[ ~< 1 is proven 
analogously. QED 

The following lemma gives the asymptotics of u~(fl) and v~(fl) as 
fl--. co for almost all h. 

L e m m a  4.4. Let N > 0  be an arbitrary number. Then for almost 
all h, 

l u i ( p ) - u , ( o o ) - c , l l - ' l  < c , ~  - ~  

I v,(~) - v,( oo ) - d , # - ' l  <. D i f l  - N 

(4.14) 

with some coefficients Q=c ; (h )  and d~=di(h)  and some constants 
C, = Ci(h, N) > 0 and D i = Di(h, N)  > O. 

The proof of Lemma4.4 utilizes the following asymptotics of the 
function ./)j(t) as fl --, co. 

L e m m a  4.5. Let N >  0 and 1 > r > 0 be arbitrary numbers. Then 

sup I f / ~ ( t ) - t l  = 0 ( #  -N)  
r  Id ~< I - r 

sup If/~(t)-ll=O(fl -u) (4.15) 
t:t>~ 1 + r  

sup f/~(1 + f l - ' s ) -  1 + f l - '  ln(l 2 e- '- ' )  =O(~_N ) 
s: I.~'1 ~< r//  

and 

fp(t)  = f ~ ( t )  + O(fl -~ ) (4.16) 

We shall prove Lemmas 4.4 and 4.5 later, and now we prove 
Theorems 3.1.-3.2. 

Proof  o f  Theorem 3. 1. Let M~ be the set of ground-state configura- 
tions of the Hamiltonian 

I - - I  I 

1-1((7" k ..... Crl) = - -  ~ a , ~ r , + l - -  y ,  h i c h - -Uk (co )  ak - -Ul (O~)  a I 
i = k  i = k  
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Then by (4.1) and (4.14), lim/~_ ~ lO.h(ak ..... a/) = 0 if (ak ..... al) r M~-/. Let 
E be the energy of a ground-state configuration. Then by (4.14), if 
(ak ..... a/) e M~/, then 

1--1 / 

,8 y. o-,o-,+, +,8,7__,/,,o-, +,8,.,,L8)o,~ +/3v1(,8)o-1 
i = k  i = k  

= - p E  + ~ [  Uk(P) -- Uk(O0)] ok + ~ [  vl(P) - v l (oo)  ] oi 

= - f iE + Ckak + dial + O( f l -  N) 

hence 

lim lO, h(ak ..... al) = Z -1 exp(ckak + dial) (4.17) 

where, from now onward, we denote by Z - J  the corresponding normal- 
izing factors [cf. (4.1) and (4.18)]. This proves the existence of the limit 

lim lO.h(ak ..... al) =It~_.h(ak ..... at) 
f l  ~ c.:_ 

for any sequence of spins (ak .... al). QED 

Proo f  o f  Theorem 3.2. When k =/ ,  (4.1) reduces to  

ltp.h(ak) = Z - '  exp{f l[  h k + Uk(fl) + Vk(fl)] ak} (4.18) 

This implies that if hk + uk( oo ) + Vk( OV ) > 0, then 

lim fl[hk +uk( f l )+Vk( f l ) ]  = lim f l[hk +Uk(OO)+Vk(O0)] +Ck +dk=OO 

Hence ak = 1 in the limit when fl --, oo. Similarly, if h k + Uk( GO ) + Vk( oO ) < 0, 
then ak = --1 in the limit when fl--, oo. This proves statement (a). 

The Gibbs measure Pp.h (see Corollary2.1) possesses the Markov 
property. Hence It~,h, as a limit measure of It/~.h, possesses the Markov 
property as well. Consider any finite-dimensional distribution p ~,h(a ........ a,,) 
such that m, n e A + w A _. Let A k ..... A~ be all the connected components of 
A in [m, n]. Then by statement (a) of Theorem 3.2 for i e  [m, n ] \A  the 
spin a~ takes a deterministic value; hence the Markov property of gz~j, 
implies that 

So, statement (b) is proved. 
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By (4.17) 

/ t~ ,h(aik_l ,a ik , . . . ,aA,~+l)=Z -1 exp(cik_laik_l +djk+lo-jk+l) (4.19) 

for any ground-state configuration of the Hamiltonian H(aik_ t ..... o:/k+~). 
In addition, the probability of any configuration which is not a ground- 
state configuration is 0. Notice that ik--1,  Jk + 1 e A+ u A_ ,  hence by 
statement (a) of Theorem 3.2, ai,_~ and aj ,+t  take deterministic values. 
Hence (4.19) implies that ll~_.h is a uniform measure on the set of ground- 
state configurations. Let us describe now all ground-state configurations of 
the Hamiltonian H(a~,_~ ..... O-Jk+l)" A characteristic property of the 
ground-state configuration is 

/l,~.h(o-;k- ~ ..... % + ~ ) > 0  

Notice that O-~k ..... O-Jk form a finite Markov chain, with values in F. 
Consider one-point and two-point distributions of this Markov chain. By 
(4.17), if ik ~< i ~< Jk, then 

It.:c,h(O-i) = Z -  1 e x p [  ( c i  + di) O-i] 

which shows that O-,. takes both values + 1 and - 1 with positive probability. 
Assume now that i k ~< i - 1  < i ~< Jk-Then  by (4.1), 

/l[I,h(Gi 1, O-i) 

1 
= ~ exp { fie O-i-i O-i + hi-i  O-i-t "-I- hio- i + u i_ l  (•) O-i--I "~- l)i(fl) O-i] } 

1 
= ~ exp{ f l [  o-i- lo-i + h i -  lo-i-1-}-hio-i-I-Ui- l( O0 ) O-i-i -}-oi(~ ) oi] 

"~- C i - - t o - i -  I -~ d iGi  + O ( f l - N ) }  

Due to the equations u~(oo)=u~_~(oo)+h~_~ and h ; + v ~ ( o o ) = - u ; ( o o ) ,  
the expression in the brackets on the right can be reduced to 

O-i_ lo- i+hi_ lo - i_ t  +hio-i+ui-i(oo) a i - t  + vi(oo) ai 

: O" i __ l a i  -t- lli( ~ ) (o - i -  1 - -  O'i) 

This gives 1 for both + + and - - configurations, and - 1 + 2u; for + - 
and - 1 - 2 u ;  for - + ;  here u~=ui(oo). Since lull ~< I, this implies that 
+ + and - - are ground states and 

ILk.h(+ + ) > 0 ,  ~ , h ( - - - - ) > O  
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In addition, the configuration + - is a ground-state configuration and 

p ~ . h ( + - ) > O  ifand only if u i = l  

and 

p~.h(--  + ) > 0  ifand only if u i = - - I  

This means that in the Markov chain a~k ..... ah ,  allowed transitions are 
+--* + and - - - * -  and also + - - * -  when u~=l  and - - - - , +  when 
u~ = - 1 .  Thus all configurations from the set Mk and only these configura- 
tions are allowed, i.e., have positive probability with respect to lt~..h. As 
noticed before, all allowed configurations have equal probabilities. This 
proves statement (c) and finishes the proof of Theorem 3.2. QED 

It remains to prove Lemma 4.4. First we prove Lemma 4.5. 

P r o o f  o f  L e m m a  4.5 .  Observe that for large x,  

tanh  x = l - 2 e - Z "  + O ( e - 4 " ) ,  x ~ cc 

and for small x > 0, 

ln(x/2) 
a r t a n h ( 1 - x ) =  - - + O ( x ) ,  x ~ + 0  

2 

Hence, when Itl ~ 1 - r, 

J/s(t) = f l - '  artanh[ tanh fl tanh(flt) ] 

= f l - i  ar tanh[tanh(fl t )]  + O(e  2qs) = t + O(e  -'-~ls) 

which proves the first line in (4.15). Next, when s~> - r f l ,  

J)s( 1 + f l -  I S )  = j ~  - -  I artanh[ tanh fl tanh(fl + s) ] 

=fl-I _ ln(e-21S+e2 2.,') "k O(e  -211 -r)//) 

= 1 _ f l - I  In(1 + e  -2') t_O(e_- ,~l .~lS  ) 
2 

which proves the last two lines in (4.15). Finally, since 

~O(1) if t > 0  
I n ( l + e - 2 ' ) = ( - 2 t + O ( 1 )  if t < 0  

then (4.16) follows from (4.15). Lemma 4.5 is proven. QED 
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Proof  o f  L e m m a  4.4. Consider the following sequences: for a given 
0 < fl < ~ ,  the sequence u( f l )= { ui(fl), i e 2~}, which is the unique solution 
of (4.2); then the sequence u(oo)={ui(oo),  i eT/} ,  which is the unique 
solution of (3.2) (it is defined for almost all h); and finally the sequence 
{u~, i>~ 0}, defined by the recurrent equation u~+l=f~-~(hi+ ui), i>  0, with 
the initial value Uo =u0(fl). Let L be an arbitrary number greater than 
n =  [2/0~]. Define the set AL of h such that the sequence u(ov) is uniquely 
defined and 

hk----hk_ I - - . . .  - - h k _ , , _  1 =OL (4.20) 

for some k in the interval n + 1 < k < L. Then Uk = Uk( oO ) = 1 (see the proof 
of Lemma 4.1) and hence by (4.16), 

lUk(fl) -- 11 ~< qk( h ) f l -  I (4.21) 

with some qk(h)>0. By the second line in (4.15) we get now that i f f l  is 
large enough, then 

lUk+t ( f l ) - -Uk+l(~)[=l fp (uk( f l )+Oc)- - l l<- . .Ck(h) f l  -~r (4.22) 

Now let us fix some h~AL and prove that for any j in the interval 
k + l < ~ j < ~ L ,  

ILIj(~)--Uj( OO ) - - C j ~ - I I  ~ Cj(h)  ~ - N  (4.23) 

with some coefficient cj=cj (h) .  We prove (4.23) by induction in j. For 
j = k  + 1, (4.23) follows from (4.22) with %.=0. Assume that (4.23) holds 
for some j/> k + 1 and prove that it holds for j + 1. We have three cases: 
(i} Ihj+ uj(oo)l < 1, (ii) Ihj+uj(oo)l > 1, and (iii) [hj+uj(oo)[ = 1. In case 
(i) we obtain, using the first line in (4.15) and the induction hypothesis 
(4.23) for j, that 

b/j+ 1(]~) = f [$( hj .-[- l.lj(~) ) = hj Ji- blj(~) --[- 0 ( ~  -N)  

= hj + uj( o'3 ) + cjf1-1 + O(fl  -N)  

= uj+ 1( ~ ) + c~jp-1 + O( f l -N)  

This gives (4.23) for j +  1 with Cj+l= cj. Similarly, in case (ii) we apply the 
second line in (4.15) and we obtain (4.23) for j + l  with cj+~ =0. Finally, 
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in case (iii) we apply the third line in (4.15) and we obtain (4.23) for j +  1 
with 

l n ( l + e  -2~) if h j + u j ( ~ ) = l  

2 (4.24) 
cj+l= l n ( l + e  2~j) if h j + u j ( o v ) - - - 1  

2 

This proves (4.23). Hence (4.23) holds for ur(fl) for any h EA L, so that it 
holds with probability 1 - eL, where eL--* 0 as L--* ~ .  Due to the transla- 
tion invariance it holds then for any fixed j with probability 1 - e L .  Hence 
it holds for any fixed j with probability 1. The same calculations are 
obviously valid for dj=dj(h). Lemma 4.4 is proven. QED 

5. CONCLUDING REMARKS 

In this paper we have studied one of the simplest random spin models, 
i.e., the 1D ferromagnetic RFIM for dichotomous field, within the Gibbs 
field formalism. 

For T # 0 we get that for any realization of the external field h ~ 0~ z the 
limiting Gibbs measure iL/~,h is unique, i.e., independent of the boundary 
conditions (see Theorem 2.1 and Corollary 2.1). This result fits well with 
the common wisdom about 1D systems with short-range interactions. The 
only difference with respect to nonrandom systems is in the statement for 
aTo' realization of the random parameter (quenched randomness). 

For T = 0  we obtain the same type of uniqueness theorem (see 
Theorem 3.1), but now for ahnost all (with respect to the Bernoulli measure 
2) field configurations h. Moreover, we provide a constructive description 
of the limiting ground-state structure (Theorems 3.1-3.2), which gives more 
light on the residual entropy problem I~H7~ as well as on recent calculations 
of the quenched two-point correlation function in ID RFIM for T--0.12~ 
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